A comparison of query-by-example methods for spoken term detection
نویسندگان
چکیده
In this paper we examine an alternative interface for phonetic search, namely query-by-example, that avoids OOV issues associated with both standard word-based and phonetic search methods. We develop three methods that compare query lattices derived from example audio against a standard ngrambased phonetic index and we analyze factors affecting the performance of these systems. We show that the best systems under this paradigm are able to achieve 77% precision when retrieving utterances from conversational telephone speech and returning 10 results from a single query (performance that is better than a similar dictionary-based approach) suggesting significant utility for applications requiring high precision. We also show that these systems can be further improved using relevance feedback: By incorporating four additional queries the precision of the best system can be improved by 13.7% relative. Our systems perform well despite high phone recognition error rates (> 40%) and make use of no pronunciation or letter-to-sound resources.
منابع مشابه
NTU System at MediaEval 2015: Zero Resource Query by Example Spoken Term Detection using Deep and Recurrent Neural Networks
This note serves as a documentation describing the methods the authors of this paper implemented for the Query by Example Search on Speech Task (QUESST) as a part of MediaEval 2015. In this work, we combined DTW, DNN and RNN in one framework to perform query by example spoken term detection in a zero resource setting.
متن کاملUnsupervised speech processing with applications to query-by-example spoken term detection
This thesis is motivated by the challenge of searching and extracting useful information from speech data in a completely unsupervised setting. In many real world speech processing problems, obtaining annotated data is not cost and time effective. We therefore ask how much can we learn from speech data without any transcription. To address this question, in this thesis, we chose the query-by-ex...
متن کاملRedundant Hash Addressing for Large-Scale Query by Example Spoken Query Detection
State of the art query by example spoken term detection (QbE-STD) systems rely on representation of speech in terms of sequences of class-conditional posterior probabilities estimated by deep neural network (DNN). The posteriors are often used for pattern matching or dynamic time warping (DTW). Exploiting posterior probabilities as speech representation propounds diverse advantages in a classif...
متن کاملUse of GPU and Feature Reduction for Fast Query-by-Example Spoken Term Detection
For query-by-example spoken term detection (QbE-STD) on low resource languages, variants of dynamic time warping techniques (DTW) are used. However, DTW-based techniques are slow and thus a limitation to search in large spoken audio databases. In order to enable fast search in large databases, we exploit the use of intensive parallel computations of the graphical processing units (GPUs). In thi...
متن کاملQuery-by-example Spoken Term Detection using Attention-based Multi-hop Networks
Retrieving spoken content with spoken queries, or query-byexample spoken term detection (STD), is attractive because it makes possible the matching of signals directly on the acoustic level without transcribing them into text. Here, we propose an end-to-end query-by-example STD model based on an attention-based multi-hop network, whose input is a spoken query and an audio segment containing sev...
متن کاملUnsupervised Hidden Markov Modeling of Spoken Queries for Spoken Term Detection without Speech Recognition
We propose an unsupervised technique to model the spoken query using hidden Markov model (HMM) for spoken term detection without speech recognition. By unsupervised segmentation, clustering and training, a set of HMMs, referred to as acoustic segment HMMs (ASHMMs), is generated from the spoken archive to model the signal variations and frame trajectories. An unsupervised technique is also desig...
متن کامل